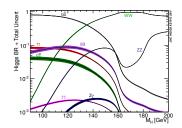
## Higher order QCD effects in WW production with jets

#### Raoul Röntsch

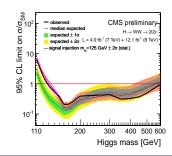
#### Fermilah


with Tom Melia, Kirill Melnikov, Markus Schulze, Giulia Zanderighi arXiv:hep-ph/1104.2327 arXiv:hep-ph/1205.6987

Argonne, 22 January 2013

#### Outline

- Motivation
- ▶ Brief outline of generalized unitarity
- WWjj to NLO in QCD
- ► Gluon fusion effects in WW, WWj
- Conclusion


## $H \rightarrow WW$ decay mode

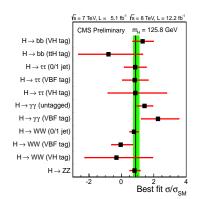


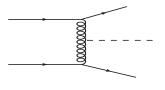
**Evidence** of Higgs in this channel  $(3.1 \sigma)$ 

#### Higgs searches:

- ightharpoonup H o WW subdominant mode
- ▶ Leptonic decay → mass reconstruction not possible







## Electroweak-Higgs coupling

- ightharpoonup H 
  ightarrow WW probes coupling of Higgs to EW sector
- Tree-level relation between W, Z mass and coupling to Higgs protected by custodial symmetry
- ▶ Rescaling of W- and Z-coupling to Higgs parametrized by  $\kappa_W, \kappa_z$ .
- $\lambda_{W,Z} = \kappa_W/\kappa_z = 1$  in SM
- Current CMS value:  $\lambda_{W,Z} = [0.57, 1.65]$
- Consistent with SM, but tighter bounds desirable

## WW as background to GF and VBF Higgs

- ▶ Higgs signals sorted into 0,1,2+
  jet bins
   → allows identification of
  backgrounds in each bin
- Around 30% of Higgs created with one jet, around 15% with two (or more) jets
- ► H(→ WW)jj created through weak boson fusion (WBF) as well as gluon fusion (GF)
- WBF has characteristic forward jets with little hadronic activity between them
- ► WW(+ jets) is irreducible background to all processes





## WW production as signal

WW production also interesting in its own right, or as place where New Physics may be found (e.g. in trilinear vector boson couplings)

- ▶ Recent CMS result for *WW* production finds  $\sigma = 69.9 \pm 2.8 \pm 5.6 \pm 3.1$  pb
- Prediction:  $\sigma = 57.7^{+2.4}_{-1.6} \text{ pb}$
- $\triangleright$  2 $\sigma$  effect ...

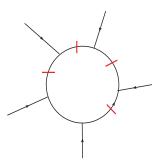
## Why NLO?

- Comparisons with Tevatron data show LO is insufficient NLO needed
- $\blacktriangleright$  NLO corrections can be large ( $\sim 60\%$  enhancement for WW production)
- No guarantee that this enhancement will be consistent over phase space or distribution
- Factorization/renormalization scale uncertainty significantly reduced at NLO

#### How NLO?

Three ingredients needed for NLO calculations:

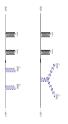
- Real emission correction
- ► Virtual (one-loop) amplitudes → generalized unitarity/OPP procedure
- ► Matching of IR divergences in real emission corrections to those in virtual amplitudes → Catani-Seymour dipoles


## Generalized Unitarity method

- Virtual amplitudes stripped of color factors to give partial amplitudes 

   primitive amplitudes
- OPP subtraction: tensor integrals in primitive amplitudes written in terms of scalar integrals (known) and coefficients
- ► Analytic form of coefficients known
- By choosing (complex) momenta such that propagators vanish, can solve for coefficients

## Generalized Unitarity method


- Equivalent to performing a unitarity cut on the primitive amplitudes, resulting in tree-level helicity amplitudes
- → computed with Berends-Giele currents (also used to calculate Born amplitudes and real emission corrections)



## WWjj production

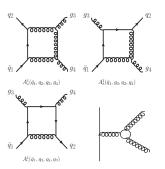
Two distinct strong production processes:

### Two quark, two gluon processes:

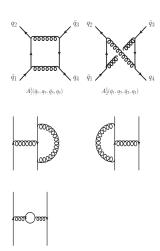


All permutations of W-bosons with gluons

## Four quark processes:


$$W^+$$

Also *t*-channel contributions  $\rightarrow$  Complicated flavor structure



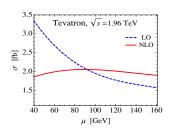

#### Virtual corrections

# **Four** primitive amplitudes for 2q,2g process:



#### Five primitive amplitudes 4q process:




#### Parameters for Tevatron


Signature: two opposite-sign leptons, missing energy, two or more jets

Cuts used similar to CDF in Higgs searches:

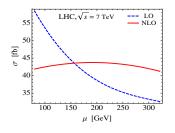
- ▶ Jets defined using  $k_T$ -algorithm with  $\Delta R_{j1j2} > 0.4$
- Jet cuts:  $p_{T,j} > 15$  GeV and  $|\eta_j| < 2.5$
- ▶ Lepton cuts:  $p_{T,l1} > 20$  GeV,  $|\eta_{l1}| < 0.8$ ;  $p_{T,l2} > 10$  GeV,  $|\eta_{l2}| < 1.1$
- ▶ Lepton isolation: jets within  $\Delta R = 0.4$  of a lepton must have  $p_{T,j} < 0.1 p_{T,j}$ .
- ▶ Lepton cuts:  $m_{\parallel} > 16$  GeV and  $p_{T, \mathrm{miss}}^{\mathrm{spec}} \equiv p_{T, \mathrm{miss}} \sin \left[ \min \left( \Delta \phi, \pi/2 \right) \right] > 25$  GeV

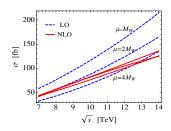
#### **Tevatron Results**





From Campbell, Ellis, Williams, hep-ph:1001.4495


- $\sigma_{LO} = 2.5 \pm 0.9$  fb,  $\sigma_{NLO} = 2.0 \pm 0.1$  fb
- At LO, uncertainty in background four times larger than signal!
- Uncertainty reduced at NLO by order of magnitude, but still comparable to signal.


#### Parameters for LHC

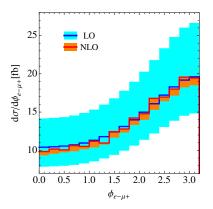
#### Look at WWjj as signal:

- Center-of-mass energy  $\sqrt{s} = 7 \text{ TeV}$
- ▶ Jets defined with anti- $k_t$  algorithm with  $\Delta R_{ii} = 0.4$
- ▶ Jets cuts:  $p_{T,j} > 30$  GeV and  $|\eta_j| < 3.2$
- ▶ Lepton cuts:  $p_{T,l} > 20$  GeV,  $|\eta_l| < 2.4$ ,  $p_{T, miss} > 30$  GeV

#### LHC cross-sections

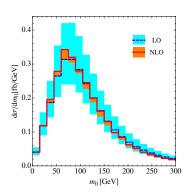


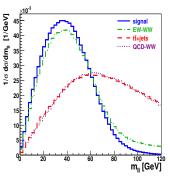



- $\sigma_{LO} = 46 \pm 13$  fb,  $\sigma_{NLO} = 42 \pm 1$  fb
- lacktriangle At NLO, approximately linear increase in cross-section as  $\sqrt{s}$  increased
- lacktriangle "Optimal" factorization/renormalization scale:  $2m_W$  at  $\sqrt{s}=7$  TeV,  $4m_W$  at  $\sqrt{s}=14$  TeV

## LHC angular distribution

To discriminate between signal and background: distributions


Useful distribution: opening angles between leptons  $\phi_{e^-\mu^+}$ .

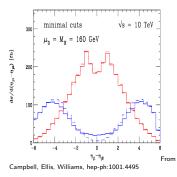

Higgs: small angle; background: back-to-back



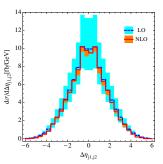
#### LHC mass distribution

Linked to  $\phi_{e^-\mu^+}$  is mass of lepton system  $\textit{m}_{\text{II}}$ 





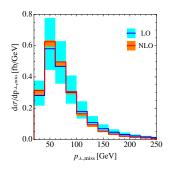

From Klämke and Zeppenfeld, hep-ph:0703202

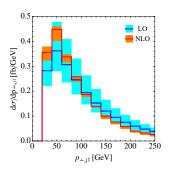

## Today's signal is tomorrow's background

Higgs created through GF has central jets;

through VBF has forward jets




## Background jets central



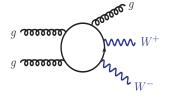

Cut on central jets removes both WWjj and GF background

NLO results greatly reduce scale uncertainty  $\rightarrow$  improved reliability

#### LHC distributions






- Mild softening at high scales indication that fixed scale is too small, and dynamic scale would be better
- ▶ Reduced scale uncertainty again apparent

## Gluon fusion in WW production

WW + n jets with no external quarks - only gluons - through a fermion loop

No corresponding tree-level amplitude:

- One-loop amplitude is finite
- ► Enters as a NNLO correction to  $pp \rightarrow WW + n$  jets



Finite, gauge invariant, self-contained contribution to NNLO correction.

Additional factors of  $\alpha_s \leftrightarrow \text{Large gluon flux at LHC}$ 



## Gluon-induced WW production

gg o WW studied by Binoth, Ciccolini, Kauer, Krämer

Find highly cut-dependent contribution to overall cross-section:

- ▶ For generic cuts\*,  $\sigma_{gg+NLO}/\sigma_{NLO} = 1.06$
- ▶ For Higgs search cuts\*\*,  $\sigma_{gg+NLO}/\sigma_{NLO} = 1.30$

$$^*p_{T,I}>$$
 20 GeV,  $|\eta_I|<$  2.5,  $p_{T,\mathrm{miss}}>$  25 GeV

\*\*35GeV 
$$<$$
  $p_{T,l\max}$   $<$  50 GeV,  $p_{T,l\min}$   $>$  25 GeV,  $\Delta\phi_{ll}$   $<$  0.78,  $m_{ll}$   $<$  35 GeV,  $p_{T,j}$   $>$  20 GeV,  $|\eta_j|$   $<$  3

BUT these cuts are not what LHC uses:

- ▶ Initially proposed:  $\Delta\phi_{II} < 1.8, m_{II} < 50$  GeV ATLAS-CONF-2012-012
- ▶ End 2012 analysis:  $\Delta \phi_{\parallel} < 0.87, m_{\parallel} < 43$  GeV ( $m_H$  dependent cuts)

#### Standard cuts

Looked at  $gg \rightarrow WW$  and  $gg \rightarrow WWg$ :

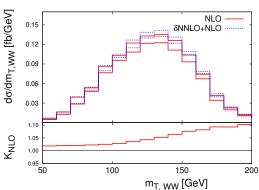
#### Standard Cuts

|        |             | $\sigma_{ m LO}$ (fb)      | $\sigma_{ m NLO}^{ m incl}$ (fb) | $\delta\sigma_{ m NNLO}$ (fb) | $\delta\sigma_{ m NNLO}/\sigma_{ m NLO}^{ m incl}$ |
|--------|-------------|----------------------------|----------------------------------|-------------------------------|----------------------------------------------------|
| 8 TeV  | WW          | $141.0(1)^{+2.8}_{-4.0}$   | $232.0(4)_{+7.5}^{-5.8}$         | $8.1(1)_{+2.2}^{-1.7}$        | 3.5%                                               |
|        | <i>WW</i> j | $87.8(1)_{+13.5}^{-10.9}$  | $111.3(2)_{+4.9}^{-5.5}$         | $3.4(1)_{+1.6}^{-1.0}$        | 3.1%                                               |
| 14 TeV | WW          | $259.6(2)_{-17.2}^{+14.2}$ | $448.3(5)_{+11.6}^{-7.4}$        | $23.6(1)_{+5.2}^{-4.1}$       | 5.3%                                               |
|        | <i>WW</i> j | $203.4(1)_{+22.9}^{-19.9}$ | $254.5(4)_{+9.0}^{-10.2}$        | $11.8(4)_{+4.7}^{-3.2}$       | 4.6%                                               |

- For WW production, results similar to Binoth et al.
- Gluon-induced production more important at  $\sqrt{s} = 14 \text{ TeV}$
- ► Gluon-induced production less important for *WWj* production

### Higgs cuts

#### Higgs search cuts


|        |             | $\sigma_{ m LO}$ (fb)   | $\sigma_{ m NLO}^{ m excl}$ (fb) | $\delta\sigma_{ m NNLO}$ (fb)                 | $\delta\sigma_{ m NNLO}/\sigma_{ m NLO}^{ m excl}$ |
|--------|-------------|-------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------------|
| 8 TeV  | WW          | $35.6(1)_{-1.3}^{+0.9}$ | $38.8(1)_{-0.8}^{+1.0}$          | $2.7(1)_{+0.7}^{-0.5}$                        | 7.0%                                               |
|        | <i>WW</i> j | $12.6(1)_{+1.8}^{-1.5}$ | $10.6(1)^{+0.3}_{-0.9}$          | $2.7(1)_{+0.7}^{-0.5} \ 0.6(1)_{+0.2}^{-0.2}$ | 5.7%                                               |
| 14 TeV | WW          | $63.4(1)_{-4.7}^{+3.9}$ | $63.4(2)_{-2.0}^{+2.1}$          | $7.5(1)_{+1.5}^{-1.2}$                        | 11.8%                                              |
|        | <i>WW</i> j | $28.7(1)_{+2.9}^{-2.6}$ | $20.5(1)_{-2.2}^{+1.7}$          | $1.8(2)_{+0.7}^{-0.5}$                        | 8.8%                                               |

- Important contribution to overall cross-section (comparable to NLO scale uncertainty)
- ▶ **BUT** not as large as 30% contribution
- ▶ *Hj* production:  $\sigma \approx 2$  fb at  $\sqrt{s} = 8$  TeV, 5 fb at  $\sqrt{s} = 14$  TeV  $\rightarrow$  gluon-induced NNLO contribution to background **third** of signal cross-section

#### NNLO K-factor



$$K_{NLO} = \frac{d\sigma_{NLO+\delta NNL}}{d\sigma_{NLO}}$$



K-factor is not uniform over phase space and its distribution can be  $\operatorname{\mathsf{cut-dependent}}$ 



#### Conclusions

- ▶ NLO QCD corrections to strong production of *WWjj* computed.
- ► Moderate (10-20%) change in cross-section compared to LO, but scale uncertainty reduced by up to order of magnitude.
- ▶ Improves reliability of distributions aiding discrimination between Higgs signal and WW background:  $\phi_{II}$ ,  $m_{II}$ ,  $\Delta\eta_{JJ}$   $\rightarrow$  allow discovery in this channel; study Higgs-EW couplings
- ▶ NNLO gluon-induced corrections to WW and WWj production computed
- ▶ These are **cut-dependent**, more important as cuts become more aggressive
- May be as large as NLO scale uncertainty, and factor 2-3 smaller than signal